

General Certificate of Education Advanced Level Examination January 2012

Mathematics

MPC3

Unit Pure Core 3

Friday 20 January 2012 1.30 pm to 3.00 pm

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

PMT

Use Simpson's rule with 7 ordinates (6 strips) to find an estimate for $\int_{-1}^{3} 4^{x} dx$. 1 (a) (4 marks)

- A curve is defined by the equation $y = 4^x$. The curve intersects the line y = 8 2x(b) at a single point where $x = \alpha$.
 - (2 marks) Show that α lies between 1.2 and 1.3. (i)
 - The equation $4^x = 8 2x$ can be rearranged into the form $x = \frac{\ln(8 2x)}{\ln 4}$. (ii)

Use the iterative formula $x_{n+1} = \frac{\ln(8 - 2x_n)}{\ln 4}$ with $x_1 = 1.2$ to find the values of (2 marks) x_2 and x_3 , giving your answers to three decimal places.

The curve with equation $y = \frac{63}{4x - 1}$ is sketched below for $1 \le x \le 16$. 2

- Find the range of f. (a)
- The inverse of f is f^{-1} . (b)
 - Find $f^{-1}(x)$. (i) (3 marks)
 - Solve the equation $f^{-1}(x) = 1$. (2 marks) (ii)
- The function g is defined by $g(x) = x^2$ for $-4 \le x \le -1$. (c)
 - Write down an expression for fg(x). (1 mark)(i)
 - (ii) Solve the equation fg(x) = 1. (3 marks)

(2 marks)

x \overline{O} 16 1

PMT

3 (a) Given that
$$y = 4x^3 - 6x + 1$$
, find $\frac{dy}{dx}$. (1 mark)

(b) Hence find $\int_{2}^{3} \frac{2x^2 - 1}{4x^3 - 6x + 1} dx$, giving your answer in the form $p \ln q$, where p and q are rational numbers. (5 marks)

4 (a) By using a suitable trigonometrical identity, solve the equation

$$\tan^2\theta = 3(3 - \sec\theta)$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ} < \theta < 360^{\circ}$. (6 marks)

(b) Hence solve the equation

$$\tan^2(4x - 10^\circ) = 3[3 - \sec(4x - 10^\circ)]$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ} < x < 90^{\circ}$. (3 marks)

- 5 (a) Describe a sequence of two geometrical transformations that maps the graph of $y = \ln x$ onto the graph of $y = 4 \ln(x e)$. (4 marks)
 - (b) Sketch, on the axes given below, the graph of $y = |4 \ln(x e)|$, indicating the exact value of the x-coordinate where the curve meets the x-axis. (3 marks)
 - (c) (i) Solve the equation $|4\ln(x-e)| = 4$. (3 marks)
 - (ii) Hence, or otherwise, solve the inequality $|4\ln(x-e)| \ge 4$. (3 marks)

Turn over ►

PMT

6 (a) Given that
$$x = \frac{1}{\sin \theta}$$
, use the quotient rule to show that $\frac{dx}{d\theta} = -\csc \theta \cot \theta$.
(3 marks)

(b) Use the substitution $x = \csc \theta$ to find $\int_{\sqrt{2}}^{2} \frac{1}{x^2 \sqrt{x^2 - 1}} dx$, giving your answer to three significant figures. (9 marks)

7 (a) A curve has equation
$$y = x^2 e^{-\frac{x}{4}}$$
.

Show that the curve has exactly two stationary points and find the exact values of their coordinates. (7 marks)

- (b) (i) Use integration by parts twice to find the exact value of $\int_0^4 x^2 e^{-\frac{x}{4}} dx$. (7 marks)
 - (ii) The region bounded by the curve $y = 3xe^{-\frac{x}{8}}$, the x-axis from 0 to 4 and the line x = 4 is rotated through 360° about the x-axis to form a solid.

Use your answer to part (b)(i) to find the exact value of the volume of the solid generated. (2 marks)

