Mathematics

Unit Pure Core 3

Friday 20 January 20121.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Use Simpson's rule with 7 ordinates (6 strips) to find an estimate for $\int_{0}^{3} 4^{x} \mathrm{~d} x$.
(4 marks)
(b) A curve is defined by the equation $y=4^{x}$. The curve intersects the line $y=8-2 x$ at a single point where $x=\alpha$.
(i) Show that α lies between 1.2 and 1.3.
(ii) The equation $4^{x}=8-2 x$ can be rearranged into the form $x=\frac{\ln (8-2 x)}{\ln 4}$. Use the iterative formula $x_{n+1}=\frac{\ln \left(8-2 x_{n}\right)}{\ln 4}$ with $x_{1}=1.2$ to find the values of x_{2} and x_{3}, giving your answers to three decimal places.

2 The curve with equation $y=\frac{63}{4 x-1}$ is sketched below for $1 \leqslant x \leqslant 16$.

The function f is defined by $\mathrm{f}(x)=\frac{63}{4 x-1}$ for $1 \leqslant x \leqslant 16$.
(a) Find the range of f .
(b) The inverse of f is f^{-1}.
(i) Find $\mathrm{f}^{-1}(x)$.
(ii) Solve the equation $\mathrm{f}^{-1}(x)=1$.
(c) The function g is defined by $\mathrm{g}(x)=x^{2}$ for $-4 \leqslant x \leqslant-1$.
(i) Write down an expression for $\operatorname{fg}(x)$.
(ii) Solve the equation $\operatorname{fg}(x)=1$.

3 (a) Given that $y=4 x^{3}-6 x+1$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Hence find $\int_{2}^{3} \frac{2 x^{2}-1}{4 x^{3}-6 x+1} \mathrm{~d} x$, giving your answer in the form $p \ln q$, where p and q are rational numbers.

4 (a) By using a suitable trigonometrical identity, solve the equation

$$
\tan ^{2} \theta=3(3-\sec \theta)
$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ}<\theta<360^{\circ}$.
(b) Hence solve the equation

$$
\tan ^{2}\left(4 x-10^{\circ}\right)=3\left[3-\sec \left(4 x-10^{\circ}\right)\right]
$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ}<x<90^{\circ}$.

5 (a) Describe a sequence of two geometrical transformations that maps the graph of $y=\ln x$ onto the graph of $y=4 \ln (x-\mathrm{e})$.
(b) Sketch, on the axes given below, the graph of $y=|4 \ln (x-\mathrm{e})|$, indicating the exact value of the x-coordinate where the curve meets the x-axis.
(c) (i) Solve the equation $|4 \ln (x-\mathrm{e})|=4$.
(ii) Hence, or otherwise, solve the inequality $|4 \ln (x-\mathrm{e})| \geqslant 4$.

6 (a) Given that $x=\frac{1}{\sin \theta}$, use the quotient rule to show that $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\operatorname{cosec} \theta \cot \theta$. (3 marks)
(b) Use the substitution $x=\operatorname{cosec} \theta$ to find $\int_{\sqrt{2}}^{2} \frac{1}{x^{2} \sqrt{x^{2}-1}} \mathrm{~d} x$, giving your answer to three significant figures.

7 (a) A curve has equation $y=x^{2} \mathrm{e}^{-\frac{x}{4}}$.
Show that the curve has exactly two stationary points and find the exact values of their coordinates.
(b) (i) Use integration by parts twice to find the exact value of $\int_{0}^{4} x^{2} \mathrm{e}^{-\frac{x}{4}} \mathrm{~d} x$. (7 marks)
(ii) The region bounded by the curve $y=3 x \mathrm{e}^{-\frac{x}{8}}$, the x-axis from 0 to 4 and the line $x=4$ is rotated through 360° about the x-axis to form a solid.

Use your answer to part (b)(i) to find the exact value of the volume of the solid generated.
(2 marks)

